Welcome! This blog contains research & information on lifestyle, nutrition and health for those with MS, as well as continuing information on the understanding of the endothelium and heart-brain connection. This blog is informative only--all medical decisions should be discussed with your own physicians.

The posts are searchable---simply type in your topic of interest in the search box at the top left.

Almost all of MS research is initiated and funded by pharmaceutical companies. This maintains the EAE mouse model and the auto-immune paradigm of MS, and continues the 20 billion dollar a year MS treatment industry. But as we learn more about slowed blood flow, gray matter atrophy, and environmental links to MS progression and disability--all things the current drugs do not address--we're discovering more about how to help those with MS.

To learn how this journey began, read my first post from August, 2009. Be well! Joan

Sunday, December 13, 2009


EGCG (green tea): metal chelator, anti-inflammatory, and super anti-oxidant

December 13, 2009 at 3:54pm

Recent studies on the usage of EGCG (green tea extract) in Multiple Sclerosis patients have shown a benefit as a neuroprotective agent and an effective antioxidant.  

EGCG is also a known chelator of iron and is capable of removing iron and metals from the brain, since it passes through the blood brain barrier, even if taken orally.

Consider this wonderful, natural, inexpensive and non-toxic supplement or just drink the tea.  Something you can do today.

Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties.

Tea, the major source of dietary flavonoids, particularly the epicatechins, signifies the second most frequently consumed beverage worldwide, which varies its status from a simple ancient cultural drink to a nutrient component, endowed possible beneficial neuro-pharmacological actions. Accumulating evidence suggests that oxidative stress, resulting in reactive oxygen species generation, plays a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers and metal chelating agents, such as natural tea polyphenols, for therapy. Vast epidemiology data indicate a correlation between occurrence of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, and green tea consumption. In particular, recent literature strengthens the perception that diverse molecular signaling pathways, participating in the neuroprotective activity of the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), renders this natural compound as potential agent to reduce the risk of various neurodegenerative diseases. In the current review, we discuss the studies concerning the mechanisms of action implicated in EGCG-induced neuroprotection and discuss the vision to translate these findings into a lifestyle arena.

http://forschungsberichte.charite.de/FOB_2006-2007/deutsch/PJ/PJ28373.html

Charite University in Berlin is currently conducting a clinical trial of EGCG in MS.  

http://clinicaltrials.gov/ct2/show/NCT00525668

EGCG and neuroprotection --

EGCG, has emerged as a potent neuroprotective agent for treatment of several neuropathological states associated with damaging effects of reactive oxygen species (ROS). EGCG has an inhibitory effect both on inflammation, by influencing T cell proliferation and inhibiting the activation of NF- B, and on neurodegeneration through its antioxidative potency as a free radical scavenger. In the present study we aim to evaluate the safety and neuroprotective effects of orally administered epigallocatechin-gallate in patients with relapsing-remitting MS in a multicentre, double-blind, randomised, stratified, placebo-controlled prospective 2-arm study. As a result of its anti-inflammatory and neuroprotective potency, EGCG should be significantly more effective than placebo in reducing the development of new contrast enhancing and T2 lesions on the one hand, but also in their conversion into T1-hypointense lesions ( black holes ), and in arresting the disease dependent acceleration of brain atrophy, and neuronal loss or dysfunction.

http://forschungsberichte.charite.de/FOB_2006-2007/deutsch/PJ/PJ28373.html

EGCG and metal chelation-

Evidence to link abnormal metal (iron, copper, mercury and zinc) metabolism and handling with Parkinson’s and Alzheimer’s diseases pathology has frequently been reported. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times.

Metal chelation has the potential to prevent iron-induced oxidative stress and aggregation of alpha-synuclein and beta-amyloid peptides. The efficacy of iron chelators depends on their ability to penetrate the subcellular compartments and cellular membranes where iron dependent free radicals are generated. Thus, natural, non-toxic, brain permeable neuroprotective drugs, are preferentially advocated for “ironing out iron” from those brain areas where it preferentially accumulates in neurodegenerative diseases. This review will discuss the most recent findings from in vivo and in vitro studies concerning the transitional metal (iron and copper) chelating property of green tea and its major polyphenol, (−)-epigallocatechin-3-gallate with respect to their potential for the treatment of neurodegenerative diseases.

http://www.ncbi.nlm.nih.gov/pubmed/17447435


Jeff's been doing well with EGCG, going on five years now.  Ask your doctor or naturopath if it might be good for you, too.  Remember, I'm not a doctor, but I want to bring you the recent studies in MS.
Joan



No comments:

Post a Comment