Welcome! This blog contains research & information on lifestyle, nutrition and health for those with MS, as well as continuing information on the understanding of the endothelium and heart-brain connection. This blog is informative only--all medical decisions should be discussed with your own physicians.

The posts are searchable---simply type in your topic of interest in the search box at the top left.

Almost all of MS research is initiated and funded by pharmaceutical companies. This maintains the EAE mouse model and the auto-immune paradigm of MS, and continues the 20 billion dollar a year MS treatment industry. But as we learn more about slowed blood flow, gray matter atrophy, and environmental links to MS progression and disability--all things the current drugs do not address--we're discovering more about how to help those with MS.

To learn how this journey began, read my first post from August, 2009. Be well! Joan

Sunday, January 24, 2016

Jugular Veins are Important

Recently published in the Journal of Mutiple Sclerosis, a review paper co-authored by Dr. Paolo Zamboni and Dr. Massimo Pedriali on the "Pathology of the Internal Jugular Vein in Multiple Sclerosis".   The complete paper is available on line for free---and I'd recommend it to all.  It is a very thorough review.


As this review outlines, there are observable and documented differences between the jugular veins of healthy controls, when compared to people with Multiple Sclerosis.  These pathological differences involve the endothelial cells which comprise the veins' lining.  Endothelial cell aptosis (death) and derangement, as seen in MS, changes the ability of the jugular veins to drain.  Valvular and intraluminal abnormalities in the jugular veins of people with MS have hemodynamic implications.  There is a shift in collagen in the jugular veins of people with MS which affects venous compliance.

Veins have received little attention and research, when compared to the study and understanding of arteries.  Certainly, in terms of brain health, the carotid arteries are scanned and studied, and neurology and stroke researchers know that blockages, clots, and impairment in flow can be disastrous to the brain.  There are treatment modalities developed to deal with carotid artery issues---from medications to open surgery, to interventional proceedures.  No one questions the importance of healthy blood flow to the brain.

But the venous system and the removal of fluids from the brain is even more important than previously imagined.

During the past two years, international researchers have described a newly discovered lymphatic drainage system, which has actual draining vessels, and relies on the brain's draining veins.  These vessels take lymph fluid, carrying metabolites, proteins and toxins, out of the brain.  This process is aided by sleep.  This science is brand new.   It has reversed what we once believed was the brain's "immune privilege."

This "stunning discovery" of a lymphatic drainage system relies on the jugular veins.

"Instead of asking, 'How do we study the  of the brain?' 'Why do  patients have the immune attacks?' now we can approach this mechanistically. Because the brain is like every other tissue connected to the peripheral  through meningeal lymphatic vessels," said Jonathan Kipnis, PhD, professor in the UVA Department of Neuroscience and director of UVA's Center for Brain Immunology and Glia (BIG). 

The brain is like every other organ in our body---it needs drainage.  Jugular veins are responsible for the exit of blood, cerebrospinal fluid (CSF) and lymph.  Any delays can cause changes to the brain's immune functioning, oxygenation, glucose metabolism and health.  Delays cause neuronal death and inflammation.  Or, what we see in multiple sclerosis.

Dr. Jonathan Kipnis, the discoverer of these lymphatic vessels, will be the keynote speaker at the International Society for Neurovascular Disease.  He will be presenting his research and proposals for studies in MS, alongside Dr. Zamboni and the other members of the ISNVD.

Here's the program.   “How the Extracranial Venous System Influences Neurological Diseases.”

This is not going away.
jugular veins are important,


Notice the difference between the top panel---healthy endothelial cells lining the jugular veins in normal controls, compared to the endothelial cells of a person with MS (bottom)

Figure 5: Scanning electronic microscopy. Top panel: regular disposition of the endothelial cells in IJVs of healthy controls, respectively at 800x (right) and 1500x (left). Bottom panel: irregular arrangement of the endothelial cells in the IJV of a MS patient, respectively at 800x (left) and 1500x (right). The cells appear lifted with craters.


  1. Hello Joan, I was reading an article today that says the lymphatic drainage system was discovered in the 1800s and then forgotten. I immediately thought of you and wondered if you had read it.


    1. Thanks so much, David!!! That's a terrific link. Dr. Bernie Juurlink mentioned the same prior research---and it's true! Researchers have gone up against the brain's immune privilege theory before---and been ignored. Because the narrative constructed--that the immune cells in the brain were a pathology--has served pharmaceutical companies quite well! Kind of like Rindfleish and the central vein in MS lesions, and Putnam and the dural sinus blockage in MS----but now, thanks to new imaging technologies, we can actual see the lymphatic vessels carrying lymph, in vivo. We can see the lymphatic cleansing which occurs during the sleep state. We can see blood flow reversing and CSF building pressure in dural sinus stenosis, we can see the central vein in an MS lesion--and this research can be shared and verified in the international community. It's a shame we have to continually re-invent the wheel, but that's why I started this blog---to document the very real and lengthy history of MS and the vasculature. So that these connections won't be buried for another generation.

  2. My greatest struggle with neurologists has been to encorage them to focus their minds on the link between MS and the vascular system.